
Caching Query Results with QuickSelect
Improves Db2 z/OS Workload Performance

By Craig S. Mullins

In today’s fast-paced digital landscape, the ability to access and process data
as quickly as possible is of utmost importance for businesses striving to gain a
competitive edge. As such, a significant trend in the database world is utilizing
memory for more types of data management and processing functions. If you
can bypass disk I/O, you can achieve tremendous performance gains. There
are many reasons for this, but of course, the most important reason is that disk
access is much slower than memory access.

Traditional disk-based data processing systems, while reliable, often struggle
to meet the demands of modern applications that require real-time analytics,
rapid transactions, and seamless scalability. Enter in-memory data processing,
a transformative approach that harnesses the power of memory to revolutionize
database systems.

In-memory data processing refers to the practice of storing and manipulating
data primarily in main memory (RAM) rather than on disk. By leveraging the high-
speed access time of memory, organizations can unlock a myriad of benefits
that traditional disk-based systems simply cannot deliver.

Accessing data in memory is orders of magnitude faster and more efficient than
reading data from disk. Memory access is usually measured in microseconds,
whereas disk access is measured in milliseconds (1 millisecond equals 1,000
microseconds).

1

Using Db2 Buffer Pools Db2 Query Result Set Caching

To take advantage of memory, most relational
database management systems, including Db2,
utilize buffer pools to cache frequently accessed
data in memory. This cache resides in RAM and
helps reduce disk I/O by serving read requests
directly from memory whenever possible. By
intelligently managing the buffer pool, database
systems can optimize memory utilization and
minimize latency, thereby improving overall
performance.

Db2 for z/OS uses buffer pools to store data pages
retrieved from disk. Each buffer pool is configured
with specific parameters such as size, number of
pages, and page size. When Db2 needs to access
data to execute a query, it first checks if the
required data pages are in memory (buffer pool).
If the pages are not in memory, it initiates a page
fetch operation to read the required pages from
disk into the buffer pool. So, buffer pools operate at
the page level for Db2 data.

But utilizing buffer pools to reduce I/O is just
one approach for leveraging in-memory data
processing. Another useful technique is query result
set caching.

For purposes of this discussion, a unique query
is defined as the combination of a specific SQL
statement and specific host variables. The query’s
result set is thus unique to the query. As the name
implies, a query result set cache stores query
results delivered by Db2 and then serves these back
to programs in response to subsequent requests
for the same results. This saves Db2 the work of
repetitively generating identical results from data
within pages stored in a buffer pool. By caching and
re-serving result sets for frequently run queries, you
can significantly reduce application wait time and
overall performance. When a query, whose result
set has been cached, is run again, the caching
application swiftly retrieves the corresponding
result from memory. This bypasses not just the
potential need for disk I/O but more importantly,
Db2’s costly computation of the same result set
over and over. This translates into accelerated
batch throughput, improved online application
responsiveness and enhanced user satisfaction.

2

QuickSelect for Db2 Workload Performance

3

Although query result set caching is not a built-in
capability of Db2 for z/OS, you can implement a
query result set cache by deploying QuickSelect for
Db2, an in-memory optimization product from Log-
On Software.

For cached result sets, QuickSelect will return
the same result set as Db2 would. By caching
the result sets of frequently run queries,
QuickSelect can significantly speed up result set
delivery. QuickSelect runs as a started task and
automatically caches frequently requested query
result sets in self-managed memory above the bar
(64-bit).

Since it makes no sense to cache a result set that
won’t be requested again, QuickSelect identifies
and caches only those result sets meeting a
‘must be requested x times before caching ’
threshold parameter. QuickSelect sits between
your applications and Db2 and observes the Db2
workload for queries whose results are in cache as

well as for queries that have just met the frequency
threshold.

• For query results that are not found in
QuickSelect cache, those queries are executed
as usual by Db2.

• If a query has just met the execution frequency
threshold, Db2 will, execute the query and return
the result set to the application. QuickSelect
will at the same time store the result set in its
cache.

• For result sets already in cache, QuickSelect
serves these directly to the application, saving
both CPU and potential I/O, thus improving
online application response times and batch job
performance.

 
The following diagrams illustrate data flow without
and then with QuickSelect. Without QuickSelect,
all queries go directly to Db2. Db2 generates the
results on the fly from pages already in buffer pools
or if needed called from disk.

Data Flow Without QuickSelect

https://log-on.com/quickselect-for-db2-performance/
https://log-on.com/quickselect-for-db2-performance/
https://log-on.com/
https://log-on.com/

Let’s add QuickSelect to the picture. Results
for eligible, frequently executed queries are
stored in QuickSelect cache. When QuickSelect
intercepts a query whose result set has been
cached, QuickSelect very quickly returns it to
the application, bypassing Db2 and its resource-
intensive computations. It is important to note that
QuickSelect is not a DBMS and performs no data
processing. It does not cache entire tables or pages
of data. It simply caches and returns frequently
requested result sets as previously generated by
Db2. QuickSelect’s cache memory requirements are
modest, generally no more than a few GB of above-
the-bar memory per Db2 subsystem.

Think of all the queries that are repetitively running
in your shop every day – and of all the redundant
Db2 processing and I/O involved in repeatedly
generating the exact same result sets.

This raises a question: Which queries should be
cached?

4

Data Flow With QuickSelect

Survey Mode

Update Sensitivity

QuickSelect Survey mode automatically identifies
cache-eligible queries. These will be read-only
static SELECT and DECLARE CURSOR statements.
Remember that a query is the combination of a
specific SQL statement and specific host variables.
An SQL statement might be executed over time
with millions of different host variables. Each
execution of a query with different host variables
generates a unique result set. One SQL statement
can be the basis for millions of unique queries and
corresponding result sets, with many repetitions
over time. QuickSelect Survey profiles your Db2
SQL workload, identifying those cache-eligible
SQL statements where the majority of queries
are repetitively run. These are the high ROI SQL
statements. At this point, the only additional
knowledge required is the DBA’s assessment of
the relative stability of the tables underlying these
cache-eligible SQL statements. These tables should
be slow-changing during most, but not necessarily
all, of the day; this avoids over-frequent cache
invalidation as described below. The administrator
then adds the names of suitable tables to a
QuickSelect list, and QuickSelect starts caching
the associated query results when placed in Save
mode. No changes to the environment of any kind
are required.

The next important question is: What happens if
data in a Db2 table that underlies cached result sets
changes? Even relatively stable tables experience
change from time to time. If QuickSelect’s cache
contains result sets generated from a table that has
just changed, the cached result sets may no longer
be valid.

QuickSelect is sensitive to these table updates.

It is aware of all data changes, including those
made by Db2 utilities like Load, Reorg, and Recover,
and by applications issuing Insert, Update, Delete,
Merge, and Truncate statements. Imminent table
updates are detected by QuickSelect in real time.
QuickSelect then immediately invalidates the
dependent cached result sets, thus preserving data
integrity. QuickSelect, at the same time, routes
requests for the just-invalidated result sets directly
to Db2 for execution. As repetitive requests for
the just-invalidated result sets are identified by
QuickSelect, those result sets are again added to
cache and, in this fashion, the cache is quickly and
dynamically rebuilt. QuickSelect Update Sensitivity
is fully supported across Db2 data sharing and
multiple-LPAR environments using XCF functions.

In other words, QuickSelect always returns the
same answer as Db2 does… only faster.

Furthermore, QuickSelect delivers plug-and-play
performance gains and CPU savings. It does not
require any risky, time-consuming modifications of
code, JCL, or database structures. Zero changes
are required. No application testing is required. You
don’t even have to Rebind your programs to take
advantage of QuickSelect.

Are you using the IBM Db2 Analytics Accelerator?
QuickSelect and IDAA are fully compatible and play
complementary roles in improving the performance
of your Db2 workload. QuickSelect intercepts and
caches result sets for frequently executed, static
SQL. The remainder of the Db2 workload is passed
to the Db2 Optimizer, which then passes IDAA-
eligible SQL to IDAA for execution. There are no
dependencies between the two solutions.

Finally, QuickSelect is non-intrusive. You can
toggle QuickSelect on/off in your production

5

environment in real-time with zero impact on
your operations other than a corresponding gain/
loss in performance. When toggled off, all query
processing reverts to native Db2 data access.
When toggled on, QuickSelect dynamically rebuilds
its cache of result sets and resumes delivering its
benefits.

6

What Results Can You Expect with
QuickSelect?

QuickSelect can improve performance, save CPU,
and reduce I/O operations for programs that
repetitively request the same results. Benchmarks
comparing QuickSelect to Db2 accessing data in
buffer pools show up to a hundredfold increase in
the speed at which SQL results are returned to the
requesting program and up to an 85% reduction
in CPU for that portion of the Db2 workload. In
addition, QuickSelect frees up Db2 resources
that can be more profitably used to service other
requests, and reduces CICS Db2-related TCB
switching for across-the-board improvements in
CICS transaction performance.

One QuickSelect user, a large European
commercial bank, was able to turn off an entire
CPU after implementing QuickSelect. In this
case, the customer saved more than 10 billion
Db2 executions during a typical 12-hour window,
executions replaced by rapid retrieval of result sets
from QuickSelect cache.

Another customer, a large commercial bank running
Db2 across a CICSplex, implemented QuickSelect
for a 24% average reduction in CICS transaction
response time and a 16% reduction in total CPU
consumption.

Deploying QuickSelect can immediately improve
online response times and reduce batch job
elapsed times. QuickSelect delivers rapid ROI by
virtue of its plug-and-play, no-changes-required
implementation.

• In-Memory Query Result Set Caching

• Zero-Change Implementation

• Automatic Cache Management

• Real-Time Update Sensitivity

• Minimal Memory Requirements

• Non-Intrusive Operation

• Customizable Caching Policies

• Highly Scalable

1. Enhanced Online Application
Responsiveness

2. Faster Batch Processing

3. Reduced Db2 Resource Consumption

4. Reduced I/O Operations

5. Immediate ROI

6. No Big Project; No Big Learning Curve

7. Set Up and ‘Forget’

Key Features:

Key Benefits:

The Bottom Line

About Craig Mullins

QuickSelect for Db2 offers a novel plug-and-play approach to in-memory data management by caching query
results. QuickSelect for Db2 significantly improves the performance of Db2-reliant online and batch programs
while reducing CPU both on average and during peaks. Whether you subscribe to Rolling 4-Hour Average or
Tailored Fit Pricing, QuickSelect can contribute to substantial savings in software and hardware costs while
improving business performance.

The bottom line: In-memory processing can save CPU, improve performance, and save money. Wise
organizations will look into multiple ways of exploiting memory to achieve results, including potentially looking
at novel software solutions like QuickSelect for Db2.

Craig S. Mullins is the president and principal consultant
of Mullins Consulting, Inc., an independent consulting and
strategy firm specializing in database management and
mainframe systems. Craig has been involved with Db2 for
z/OS since Version 1 and has extensive experience as an
application developer, DBA, and instructor. He has been
recognized as an IBM Gold Consultant and IBM Champion
for Data and AI by IBM, and as an Influential Mainframer
by Planet Mainframe. Craig is the author of several books,
including the industry-leading “DB2 Developer’s Guide” on
Db2 for z/OS and “Database Administration: The Complete
Guide to DBA Practices and Procedures,” the only book
on heterogeneous database administration. Craig can be
reached at http://www.MullinsConsulting.com

Additional information on QuickSelect for Db2 can be found
at https://log-on.com/quickselect-for-db2-performance/ or
by emailing to ask@log-on.com

7

https://log-on.com/quickselect-for-db2-performance/
https://www.mullinsconsulting.com/
https://log-on.com/quickselect-for-db2-performance/

